

Python Rest Api Framework’s documentation

Python REST API framework is a set of utilities based on werkzeug to
easily build Restful API with a MVC pattern. Main features includes:
Pagination, Authentication, Authorization, Filters, Partials Response,
Error handling, data validators, data formaters...
and more...

Contents:

	What is Python REST API Framework
	Architecture

	How To use it

	QuickStart

	Where to go from here

	Tutorial: building an adressebook API
	First Step Building a user endpoint

	Playing with the newly created endpoint

	Adding validators to your DataStore

	Show data to users

	Working with Pagination

	Loading multiple endpoint

	Linking ressource together

	Representing relations

	Authentication and Authorization: Protecting your API

	Rate Limiting your endpoints

	Implementing Partial Response

	The Whole Application

	REST API Framework API references
	Main modules

	Optional modules

A Full working example

from rest_api_framework import models
from rest_api_framework.datastore import SQLiteDataStore
from rest_api_framework.views import JsonResponse
from rest_api_framework.controllers import Controller
from rest_api_framework.datastore.validators import UniqueTogether
from rest_api_framework.pagination import Pagination

class UserModel(models.Model):
 """
 Define how to handle and validate your data.
 """
 fields = [models.StringField(name="first_name", required=True),
 models.StringField(name="last_name", required=True),
 models.PkField(name="id", required=True)
]

def remove_id(response, obj):
 """
 Do not show the id in the response.
 """
 obj.pop(response.model.pk_field.name)
 return obj

class UserEndPoint(Controller):
 ressource = {
 "ressource_name": "users",
 "ressource": {"name": "adress_book.db", "table": "users"},
 "model": UserModel,
 "datastore": SQLiteDataStore,
 "options": {"validators": [UniqueTogether("first_name", "last_name")]}
 }

 controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 "options": {"pagination": Pagination(20)}
 }

 view = {"response_class": JsonResponse,
 "options": {"formaters": ["add_ressource_uri", remove_id]}}

if __name__ == '__main__':

 from werkzeug.serving import run_simple
 from rest_api_framework.controllers import WSGIDispatcher
 app = WSGIDispatcher([UserEndPoint])
 run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

Indices and tables

	Index

	Module Index

	Search Page

What is Python REST API Framework

Python REST API framework is a set of utilities based on werkzeug to
easily build Restful API. It keep a clean codebase and is easy to
configure and extends.

It does not decide how you want to render your data, or where they
lives, or other decisions.

Instead it give you a good start with an extensible architecture to
build your own API.

Python REST API Framework has not been create for the usual
case. Instead it give you some hook to your very special ressource
provider, your very special view management and your very special way
of displaying data.

Python REST API Framework is fully REST compilant; It implement the
common verbs:

	GET

	POST

	UPDATE

	DELETE

	HEAD

It also implement:

	PAGINATION

	AUTHENTICATION

	RATE-LIMIT

	DATA VALIDATION

	PARTIAL RESPONSE

Architecture

Python REST API Framework is base on the MVC pattern. You define some
endpoints defining a Ressource, a Controller and a View with a set of
options to configure them.

Controller

Manage the way you handle request. Controller create the urls
endpoints for you. List, Unique and Autodocumented endpoints.

Controller also manage pagination, formaters, authentication,
authorization, rate-limit and allowed method.

DataStore

Each method of a Controller call the DataStore to interact with
data. The DataStore must be able to retreive data from a
ressource.

Each datastore act on a particular type of ressource
(database backend, api backend, csv backend etc...). It must be
able to validate data, create new ressources, update existing
ressources, manage filters and pagination.

Optional configuration option, that can be unique for a particular
datastore like Ressource level validation (unique together and so),
ForeignKey management...

View

Views defines how the data must be send to the client. It send a
Response object and set the needed headers, mime-type and other
presentation options like formaters.

How To use it

To create as many endpoint as you need. Each endpoints defining a
ressource, a controller and a view. Then add them to the
rest_api_framework.controllers.WSGIDispatcher

See QuickStart for an example or the Tutorial: building an adressebook API for the whole picture.

QuickStart

A Simple API

For this example, we will use a python list containing dicts. This is
our data:

ressources = [
 {"name": "bob",
 "age": a,
 "id": a
 } for a in range(100)
]

Then we have to describe this ressource. To describe a ressouce, you
must create a Model class inheriting from base Model class:

from rest_api_framework import models

class ApiModel(models.Model):

 fields = [models.IntegerField(name="age", required=True),
 models.StringField(name="name", required=True),
 models.PkField(name="id")
]

Each Field contain validators. When you reuse an existing Field class
you get his validators for free.

There is already a datastore to handle this type of data: PythonListDataStore.
We can reuse this store:

from rest_api_framework.datastore import PythonListDataStore

then we need a Controller class to hanlde our API:

from rest_api_framework.controllers import Controller

and a view to render our data

from rest_api_framework.views import JsonResponse

class ApiApp(Controller):
 ressource = {
 "ressource_name": "address",
 "ressource": ressources,
 "model": ApiModel,
 "datastore": PythonListDataStore
 }

 controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 }

 view = {"response_class": JsonResponse}

A controller is build with 3 dicts:

Ressource

Ressource define your data. Where are your data ? How can they be
accessed ? What they look likes?

	
	ressource_name: will be used to build the url endpoint to your

	ressource.

	
	ressource: where your ressource lies.this argument tell the

	datastore how they can be accessed. It can be the database name
and the database table for a SQL datastore or the url endpoint to
a distant API for exemple.

	
	model: describe how your data look like. Wich field it show, how

	to validate data and so on.

	
	datastore: the type of your data. There is datastore for simple

	Python list of dict and SQLite datastore. They are exemple on how
to build your own datastore depending on your needs.

Controller

The controller define the way your data should be accessed. Should the
results be paginated ? Authenticated ? Rate-limited ? Wich it the
verbs you can use on the resource ? and so on.

	
	list_verbs: define the verbs you can use on the main endpoint of

	your ressource. If you dont’ use “POST”, a user cannot create new
ressources on your datastore.

	
	unique_verbs: define the verbs you can use on the unique

	identifier of the ressource. actions depending on the verbs
follows the REST implementation: PUT to modify an existing
ressource, DELETE to delete a ressource.

View

view define How your ressoources should be rendered to the
user. It can be a Json format, XML, or whatever. It can also
render pagination token, first page, last page, number of objects
and other usefull informations for your users.

	response_class: the response class you use to render your data.

To test you application locally, you can add:

if __name__ == '__main__':
 from werkzeug.serving import run_simple
 from rest_api_framework.controllers import WSGIDispatcher
 app = WSGIDispatcher([ApiApp])
 run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

then type “python app.py” and your API is up and running

Options

Each of this dicts can take an optional parameter: “option”. This
parameter is a dict containing all the options you want to use with
either the datastore, the view or the controller.

You can learn more about optional parameters in the documentation of
each topic : datastore, view, Controllers

Using a database

Instead of using a python dict, you may want to actualy save your data
in a database. To do so, you just have to change your datastore and
define your ressources in a way SQL datastore can understand.

SQLiteDataStore use sqlite3 as database backend. ressources will be a
dict with database name and table name. The rest of the configuration
is the same as with the PythonListDataStore.

Note

if the sqlite3 database does not exist, REST API Framework create it for you

from rest_api_framework.datastore import SQLiteDataStore
from rest_api_framework.controllers import Controller
from rest_api_framework.views import JsonResponse
from rest_api_framework import models
from rest_api_framework.pagination import Pagination

class ApiModel(models.Model):
 fields = [models.StringField(name="message", required=True),
 models.StringField(name="user", required=True),
 models.PkField(name="id", required=True),
]

class ApiApp(Controller):
 ressource = {
 "ressource_name": "tweets",
 "ressource": {"name": "twitter.db", "table": "tweets"},
 "datastore": SQLiteDataStore,
 "model": ApiModel
 }
 controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"]
 "options": {"pagination": Pagination(20)}
 }
 view = {"response_class": JsonResponse}

if __name__ == '__main__':
 from werkzeug.serving import run_simple
 from rest_api_framework.controllers import WSGIDispatcher
 app = WSGIDispatcher([ApiApp])
 run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True

Where to go from here

	Tutorial: building an adressebook API

	REST API Framework API references

Tutorial: building an adressebook API

	First Step Building a user endpoint
	Define a model

	Chose a DataStore

	Chose a view

	Create The user endpoint

	Summary

	Playing with the newly created endpoint
	Create a user

	List and Get

	Delete a user

	Update a User

	Filtering

	Error handling

	Autodocumentation

	Adding validators to your DataStore
	UniqueTogether

	Show data to users
	Define a formater function

	Make things generics

	Working with Pagination
	Creating fixtures

	Pagination

	Browsering Through Paginated objects

	Pagination and Filters

	Loading multiple endpoint
	Define a new model

	Inherite from previous apps

	Add the app to the dispatcher

	Check that everything work

	Linking ressource together
	Adding an adress

	Create a user linked to an address

	Retreive the adress of a user

	Retreive users from an adress

	Representing relations
	Representiing the relation on the user side

	Check the formater

	Formating data for the system

	Check the Controller translation

	Authentication and Authorization: Protecting your API
	Authentication

	Define a backend

	Instanciate the Authentication backend

	Instanciate the Authorization backend

	Testing Authentication and Authorization Backend

	Rate Limiting your endpoints
	Create a datastore for rate-limit:

	Add Rate-limit to your API

	Test!

	Implementing Partial Response
	Test the Partial

	The Whole Application

First Step Building a user endpoint

For this project we need users. Users will be helpfull for our adress
book and for our authentication process.

Users will be define with at least a first name and a last name. We
also need an unique identifier to retreive the user.

Note

For this tutorial the file yyou create will be named app.py
To launch your application then just type in a terminal:

python app.py

Define a model

from rest_api_framework import models

class UserModel(models.Model):

 fields = [models.StringField(name="first_name", required=True),
 models.StringField(name="last_name", required=True),
 models.PkField(name="id", required=True)
]

The use of required_true will ensure that a user without this field
cannot be created

Chose a DataStore

We also need a datastore to get a place where we can save our
users. For instance we will use a sqlite3 database. The
SQLiteDataStore is what we need

from rest_api_framework.datastore import SQLiteDataStore

Chose a view

We want results to be rendered as Json. We use the JsonResponse view
for that:

from rest_api_framework.views import JsonResponse

Create The user endpoint

To create an endpoint, we need a controller. This will manage our
endpoint in a RESTFUL fashion.

from rest_api_framework.controllers import Controller

class UserEndPoint(Controller):
 ressource = {
 "ressource_name": "users",
 "ressource": {"name": "adress_book.db", "table": "users"},
 "model": UserModel,
 "datastore": SQLiteDataStore
 }

 controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"]
 }

 view = {"response_class": JsonResponse}

then we must run our application:

if __name__ == '__main__':
 from werkzeug.serving import run_simple
 from rest_api_framework.controllers import WSGIDispatcher
 app = WSGIDispatcher([UserEndPoint])
 run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

Summary

So far, all of the code should look like this:

from rest_api_framework import models
from rest_api_framework.datastore import SQLiteDataStore
from rest_api_framework.views import JsonResponse
from rest_api_framework.controllers import Controller

class UserModel(models.Model):

 fields = [models.StringField(name="first_name", required=True),
 models.StringField(name="last_name", required=True),
 models.PkField(name="id", required=True)
]

class UserEndPoint(Controller):
 ressource = {
 "ressource_name": "users",
 "ressource": {"name": "adress_book.db", "table": "users"},
 "model": UserModel,
 "datastore": SQLiteDataStore
 }

 controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"]
 }

 view = {"response_class": JsonResponse}

if __name__ == '__main__':
 from werkzeug.serving import run_simple
 from rest_api_framework.controllers import WSGIDispatcher
 app = WSGIDispatcher([UserEndPoint])
 run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

Note

to launch your application, just type in a terminal:

python app.py

Next: Playing with the newly created endpoint

Playing with the newly created endpoint

First you can check that your endpoint is up

curl -i "http://localhost:5000/users/"

HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 44
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 11:13:44 GMT

{
"meta": {
 "filters": {}
},
"object_list": []
}

Your endpoint is responding but does not have any data. Let’s add
some:

Create a user

curl -i -H "Content-type: application/json" -X POST -d '{"first_name":"John", "last_name": "Doe"}' http://localhost:5000/users/

HTTP/1.0 201 CREATED
Location: http://localhost:5000/users/1/
Content-Type: application/json
Content-Length: 0
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 13:00:13 GMT

If you look carfully at the response, you can see the header
“Location” giving you the ressource uri of the ressource you just
created. This is usefull if you want to retreive your object. Let’s
get a try:

List and Get

curl -i "http://localhost:5000/users/1/"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 51
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 16:53:19 GMT

{
"first_name": "John",
"id": 1,
"last_name": "Doe",
"ressource_uri": "/users/1/"
}

You can see that ressource_uri was not part of the ressource. It have
been added by the View itself. View can add multiple
metadata, remove or change some fields and so on. More on that in
Show data to users

The list of users is also updated:

curl -i "http://localhost:5000/users/"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 83
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 17:03:00 GMT

{
"meta": {
 "filters": {}
},
"object_list": [
 {
 "first_name": "John",
 "id": 1,
 "last_name": "Doe",
 "ressource_uri": "/users/1/"
 }
]
}

Delete a user

Let’s add a new user:

curl -i -H "Content-type: application/json" -X POST -d '{"first_name":"Peter", "last_name": "Something"}' http://localhost:5000/users/

HTTP/1.0 201 CREATED
Location: http://localhost:5000/users/2/
Content-Type: application/json
Content-Length: 0
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 13:00:13 GMT

and now delete it:

curl -i -X DELETE "http://localhost:5000/users/2/"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 0
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 20:41:46 GMT

You can check that the user no longer exists:

curl -i "http://localhost:5000/users/2/"
HTTP/1.0 404 NOT FOUND
Content-Type: application/json
Connection: close
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 11:16:33 GMT

{ "error": "<p>The requested URL was not found on the
server.</p><p>If you entered the URL manually please check your
spelling and try again.</p>" }

And the list is also updated:

curl -i "http://localhost:5000/users/"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 125
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 11:17:46 GMT

{
"meta": {
 "filters": {}
},
"object_list": [
 {
 "first_name": "John",
 "id": 1,
 "last_name": "Doe",
 "ressource_uri": "/users/1/"
 }
]
}

Update a User

Let’s go another time to the creation process:

curl -i -H "Content-type: application/json" -X POST -d '{"first_name":"Steve", "last_name": "Roger"}' http://localhost:5000/users/
HTTP/1.0 201 CREATED
Location: http://localhost:5000/users/3/
Content-Type: application/json
Content-Length: 0
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 20:45:38 GMT

But well everybody now that Steve Roger real name is Captain
America. Let’s update this user:

curl -i -H "Content-type: application/json" -X PUT -d '{"first_name":"Capitain", "last_name": "America"}' http://localhost:5000/users/3/
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 58
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 20:57:47 GMT

{"first_name": "Capitain", "last_name": "America", "id": 3, "ressource_uri": "/users/3/"}

Argh! Thats a typo. the fist name is “Captain”, not “Capitain”. Let’s
correct this:

curl -i -H "Content-type: application/json" -X PUT -d '{"first_name":"Captain"}' http://localhost:5000/users/3/
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 59
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 21:08:04 GMT

{"first_name": "Captain", "last_name": "America", "id": 3, "ressource_uri": "/users/3/"}

Filtering

Ressources can be filtered easily using parameters:

curl -i "http://localhost:5000/users/?last_name=America"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 236
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 12:07:21 GMT

{"meta": {"filters": {"last_name": "America"}}, "object_list":
[{"first_name": "Joe", "last_name": "America", "id": 1,
"ressource_uri": "/users/1/"}, {"first_name": "Bob", "last_name":
"America", "id": 3, "ressource_uri": "/users/3/"}]

Multiple filters are allowed:

curl -i "http://localhost:5000/users/?last_name=America&first_name=Joe"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 171
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 12:09:32 GMT

{"meta": {"filters": {"first_name": "Joe", "last_name": "America"}},
"object_list": [{"first_name": "Joe", "last_name": "America", "id": 1,
"ressource_uri": "/users/1/"}]}

Error handling

Of course, If data is not formated as expected by the API, the base
error handling take place.

Missing data

If you don’t provide a last_name, the API will raise a BAD REQUEST
explaining your error:

curl -i -H "Content-type: application/json" -X POST -d '{"first_name":"John"}' http://localhost:5000/users/

HTTP/1.0 400 BAD REQUEST
Content-Type: application/json
Content-Length: 62
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 13:21:10 GMT

{"error": "last_name is missing. Cannot create the ressource"}

Invalid Data

The same apply if you dont give coherent data:

curl -i -H "Content-type: application/json" -X POST -d '{"first_name":45, "last_name": "Doe"}' http://localhost:5000/users/

HTTP/1.0 400 BAD REQUEST
Content-Type: application/json
Content-Length: 41
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 13:24:53 GMT
{"error": "first_name does not validate"}

however, there is no duplicate check. So you can create as many “John
Doe” you want. This could be a huge problem if your not able to
validate uniqueness of a user. For the API, this is not a problem
because each user is uniquely identified by his id.

If you need to ensure it can be only one John Doe, you must add a
validator on your datastore.

Autodocumentation

Your API is autodocumented by Python REST API Framework.

curl -i -X GET http://localhost:5000/schema/
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 268
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Wed, 16 Oct 2013 08:24:13 GMT

{
 "users": {
 "allowed list_verbs": [
 "GET",
 "POST"
],
 "allowed unique ressource": [
 "GET",
 "PUT",
 "DELETE"
],
 "list_endpoint": "/users/",
 "schema_endpoint": "/schema/users/"
 }
}

url -i -X GET http://localhost:5000/schema/users/
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 206
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Wed, 16 Oct 2013 09:04:16 GMT

{
 "first_name": {
 "example": "Hello World",
 "required": "true",
 "type": "string"
 },
 "last_name": {
 "example": "Hello World",
 "required": "true",
 "type": "string"
 }
}

Next: Adding validators to your DataStore

Adding validators to your DataStore

In this exemple, you want to check that a user with the same last_name
and same first_name does not exist in your datastore before creating a
new user.

For this you can use UniqueTogether:

UniqueTogether

Change your UserEndPoint to get:

from rest_api_framework.datastore.validators import UniqueTogether

class UserEndPoint(Controller):
 ressource = {
 "ressource_name": "users",
 "ressource": {"name": "adress_book.db", "table": "users"},
 "model": UserModel,
 "datastore": SQLiteDataStore,
 "options":{"validators": [UniqueTogether("first_name", "last_name")]}
 }

 controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"]
 }

 view = {"response_class": JsonResponse}

each of ressource, controller and views can have various options to
add new functionality to them. The “validators” option of ressource
enable some datastore based validators. As you can see, validators are
a list. This meen that you can add many validators for a single datastore.

UniqueTogether will ensure that a user with first_name: John and
last_name: Doe cannot be created.

Let’s try:

curl -i -H "Content-type: application/json" -X POST -d '{"first_name": "John", "last_name": "Doe"}' http://localhost:5000/users/
HTTP/1.0 400 BAD REQUEST
Content-Type: application/json
Content-Length: 57
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 17:13:41 GMT

{"error": "first_name,last_name must be unique together"}

Next: Show data to users

Show data to users

The view you have used so far just added a ressource_uri. But preserve
the id attribut. As id is an internal representation of the data you
may wich to remove it.

Define a formater function

To do so you’ll have to write a simple function to plug on the
view. This function is a formater. When the View instanciate the
formater, it give you access to the response object and the object to
be rendered.

Because you want to remove the id of the reprensentaion of your
ressource, you can write:

def remove_id(response, obj):
 obj.pop("id")
 return obj

and change the view part of your UserEndPoint as follow:

view = {"response_class": JsonResponse,
 "options": {"formaters": ["add_ressource_uri",
 remove_id]}}

add_ressource_uri is the default formatter for this View. You dont
need to remove it for now. But if you try, then it will work as
expected. The ressource_uri field will be removed.

The idea behind Python REST API Framework is to always get out of
your way.

You can check that it work as expected:

curl -i "http://localhost:5000/users/1/"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 80
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Mon, 14 Oct 2013 23:41:55 GMT

{"first_name": "Captain", "last_name": "America",
"ressource_uri": "/users/1/"}

Make things generics

This implementation work on your endpoint because you each object has
an id. But, if later you create another endpoint with ressources
lacking the “id” key, you’ll have to re-write your function.

Instead, you can take advantage of the response wich is part of the
parameters of your function.

response object carry the attribut model who define your ressources
fields. You can then get the name of the Pk field used with this
ressource with:

response.model.pk_field.name

Your code then become:

def remove_id(response, obj):
 obj.pop(response.model.pk_field.name)
 return obj

And reuse this formatter as long as you need.

Formaters are here to help you build clean and meaningful ressources
representations. It should hide internal representation of your
ressources and return all of the fields needed to manipulate and
represent your data.

Next Working with Pagination

Working with Pagination

Creating fixtures

When your address book will be full of entry, you will need to add a
pagination on your API. As it is a common need, REST API Framework
implement a very easy way of doing so.

Before you can play with the pagination process, you will need to
create more data. You can create those records the way you want:

	direct insert into the database

sqlite3 adress_book.db
INSERT INTO users VALUES ("Nick", "Furry", 6);

	using the datastore directly

store = SQLiteDataStore({"name": "adress_book.db", "table": "users"}, UserModel)
store.create({"first_name": "Nick", "last_name": "Furry"})

	using your API

curl -i -H "Content-type: application/json" -X POST -d '{"first_name": "Nick", "last_name": "Furry"}' http://localhost:5000/users/

each on of those methods have advantages and disavantages but they all
make the work done. For this example, I propose to use the well know
requests package with a script to create a bunch of random records:

For this to work you need to install resquests : http://docs.python-requests.org/en/latest/user/install/#install

import json
import requests
import random
import string

def get_random():
 return ''.join(
 random.choice(
 string.ascii_letters) for x in range(
 int(random.random() * 20)
)
)

for i in range(200):
 requests.post("http://localhost:5000/users/", data=json.dumps({"first_name": get_random(), "last_name": get_random()}))

Pagination

Now your datastore is filled with more than 200 records, it’s time to
paginate. To do so import Pagination and change the controller part of
your app.

from rest_api_framework.pagination import Pagination

class UserEndPoint(Controller):
 ressource = {
 "ressource_name": "users",
 "ressource": {"name": "adress_book.db", "table": "users"},
 "model": UserModel,
 "datastore": SQLiteDataStore,
 "options": {"validators": [UniqueTogether("first_name", "last_name")]}
 }

 controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 "options": {"pagination": Pagination(20)}
 }

 view = {"response_class": JsonResponse,
 "options": {"formaters": ["add_ressource_uri", remove_id]}}

and try your new pagination:

curl -i "http://localhost:5000/users/"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 1811
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 11:32:55 GMT

{
"meta": {
 "count": 20,
 "filters": {},
 "next": "?offset=20",
 "offset": 0,
 "previous": "null",
 "total_count": 802
},
"object_list": [
 {
 "first_name": "Captain",
 "last_name": "America",
 "ressource_uri": "/users/1/"
 },
 {
 "first_name": "Captain",
 "last_name": "America",
 "ressource_uri": "/users/3/"
 },
 {
 "first_name": "John",
 "last_name": "Doe",
 "ressource_uri": "/users/4/"
 },
 {
 "first_name": "arRFOSYZT",
 "last_name": "",
 "ressource_uri": "/users/5/"
 },
 {
 "first_name": "iUJsYORMuYeMUDy",
 "last_name": "TqFpmcBQD",
 "ressource_uri": "/users/6/"
 },
 {
 "first_name": "EU",
 "last_name": "FMSAbcUJBSBDPaF",
 "ressource_uri": "/users/7/"
 },
 {
 "first_name": "mWAwamrMQARXW",
 "last_name": "yMNpEnYOPzY",
 "ressource_uri": "/users/8/"
 },
 {
 "first_name": "y",
 "last_name": "yNiKP",
 "ressource_uri": "/users/9/"
 },
 {
 "first_name": "s",
 "last_name": "TRT",
 "ressource_uri": "/users/10/"
 },
 {
 "first_name": "",
 "last_name": "zFUaBd",
 "ressource_uri": "/users/11/"
 },
 {
 "first_name": "WA",
 "last_name": "priJ",
 "ressource_uri": "/users/12/"
 },
 {
 "first_name": "XvpLttDqFmR",
 "last_name": "liU",
 "ressource_uri": "/users/13/"
 },
 {
 "first_name": "ZhJqTgYoEUzmcN",
 "last_name": "KKDqHJwJMxPSaTX",
 "ressource_uri": "/users/14/"
 },
 {
 "first_name": "qvUxiKIATdKdkC",
 "last_name": "wIVzfDlKCkjkHIaC",
 "ressource_uri": "/users/15/"
 },
 {
 "first_name": "YSSMHxdDQQsW",
 "last_name": "UaKCKgKsgEe",
 "ressource_uri": "/users/16/"
 },
 {
 "first_name": "EKLFTPJLKDINZio",
 "last_name": "nuilPTzHqattX",
 "ressource_uri": "/users/17/"
 },
 {
 "first_name": "SPcDBtmDIi",
 "last_name": "MrytYqElXiIxA",
 "ressource_uri": "/users/18/"
 },
 {
 "first_name": "OHxNppXiYp",
 "last_name": "AUvUXFRPICsJIB",
 "ressource_uri": "/users/19/"
 },
 {
 "first_name": "WBFGxnoe",
 "last_name": "KG",
 "ressource_uri": "/users/20/"
 },
 {
 "first_name": "i",
 "last_name": "ggLOcKPpMfgvVGtv",
 "ressource_uri": "/users/21/"
 }
]
}

Browsering Through Paginated objects

Of course you get 20 records but the most usefull part is the meta
key:

{"meta":
 {"count": 20,
 "total_count": 802,
 "next": "?offset=20",
 "filters": {},
 "offset": 0,
 "previous": "null"}
}

You can use the “next” key to retreive the 20 next rows:

curl -i "http://localhost:5000/users/?offset=20"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 1849
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 11:38:59 GMT

{"meta": {"count": 20, "total_count": 802, "next": "?offset=40",
"filters": {}, "offset": 20, "previous": "?offset=0"}, "object_list":
[<snip for readability>]}

Note

The count and offset keywords can be easily changed to match your
needs. pagination class may take an offset_key and count_key
parameters. So if you prefer to use first_id and limit, you can
change your Paginator class to do so:

"options": {"pagination": Pagination(20,
 offset_key="first_id",
 count_key="limit")

Wich will results in the following:

curl -i "http://localhost:5000/users/"
{"meta": {"first_id": 0, "total_count": 802, "next": "?first_id=20",
"limit": 20, "filters": {}, "previous": "null"}, "object_list": [<snip
for readability>]

Pagination and Filters

Pagination and filtering play nice together

curl -i "http://localhost:5000/users/?last_name=America"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 298
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 12:14:59 GMT

{"meta": {"count": 20,
 "total_count": 2,
 "next": "null",
 "filters": {"last_name": "America"},
 "offset": 0,
 "previous": "null"},
 "object_list": [
 {"first_name": "Joe",
 "last_name": "America",
 "ressource_uri": "/users/1/"},
 {"first_name": "Bob",
 "last_name": "America",
 "ressource_uri": "/users/3/"}
]
 }

Next: Loading multiple endpoint

Loading multiple endpoint

Now that your fist endpoint work as expected, you will need to add an
address field on the user model. But as some users can have the same
address, and because you want to retreive some user using an address,
you will need to create an new endpoint:

Define a new model

class AddressModel(models.Model):

 fields = [models.StringField(name="country", required=True),
 models.StringField(name="city", required=True),
 models.StringField(name="street", required=True),
 models.IntegerField(name="number", required=True),
 models.PkField(name="id", required=True)
]

Inherite from previous apps

The only thing that change here in comparisson to the UserEndPoint you
created earlier is the ressource dict. So instead of copy pasting a
lot of lines, let’s heritate from your first app:

class AddressEndPoint(UserEndPoint):
 ressource = {
 "ressource_name": "address",
 "ressource": {"name": "adress_book.db", "table": "address"},
 "model": AddressModel,
 "datastore": SQLiteDataStore
 }

All the options already defined in the UserEndPoint will be available
with this new one. Pagination, formater and so on.

Of course, if you change the controller or the view of UserEndPoint,
AddressEndPoint will change too. If it become a problem, you’ll have
to create a base class with common options and configurations and each
of your endpoints will inherit from this base class. Each endpoint
will be able to change some specifics settings.

The last thing to do to enable your new endpoint is to add it to the
WSGIDispatcher

Add the app to the dispatcher

if __name__ == '__main__':
 from werkzeug.serving import run_simple
 from rest_api_framework.controllers import WSGIDispatcher
 app = WSGIDispatcher([AddressEndPoint, UserEndPoint])
 run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

Note

For now the order you register AddressEndPoint and UserEndPoint
doesn’t make a difference. But we will add a reference from the
user table to the address table. At this point, you will need to
reference AddressEndPoint before UserEndPoint.

Check that everything work

curl -i "http://localhost:5000/address/"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 124
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 15:45:34 GMT

{
"meta": {
 "count": 20,
 "filters": {},
 "next": "null",
 "offset": 0,
 "previous": "null",
 "total_count": 0
},
"object_list": []
}

next: Linking ressource together

Linking ressource together

Now that you have users and address, you want to link them
together. Adding a reference from a user to his user.

Not all the datastore can handle this type of relation but hopefully,
the SQLiteDataStore does.

First you will need to change your UserModel definition:

fields = [models.StringField(name="country", required=True),
 models.StringField(name="city", required=True),
 models.StringField(name="street", required=True),
 models.IntegerField(name="number", required=True),
 models.IntForeign(name="user",
 foreign={"table": "users",
 "column": "id",
 }
),
 models.PkField(name="id", required=True)
]

The part we added is:

models.IntForeign(name="address",
 foreign={"table": "address",
 "column": "id",
 }
),

This will add a foreign key constrain on the user ensuring the address
id you give corresspond to an existing address.

	table : is the table of the ressource your are linking

	column: is the column you will check for the constrain

Note

unfortunately, at the time of writing, there is no way to
update the schema automaticaly. You will need either to destroy
your database (Python Rest Framework will create a fresh one) or do
an alter table by hands. As this is just a tutorial, we will choose
the second option and delete the file “adress.db”

It’s also important to note the your endpoints must be listed in
the Wrapper in the order of foreing keys. First the model to link
to, then the model that will be linked

Adding an adress

curl -i -H "Content-type: application/json" -X POST -d
'{"country":"France", "city": "Paris", "street": "quais de Valmy",
"number": 45}' http://localhost:5000/address/

HTTP/1.0 201 CREATED
Location: http://localhost:5000/address/1/
Content-Type: application/json
Content-Length: 0
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 17:23:49 GMT

Create a user linked to an address

Because, as the API developper you know that
http://localhost:5000/address/1/ corresond to the address with the
“id” 1 you can create a user:

curl -i -H "Content-type: application/json" -X POST -d
'{"first_name":"Super", "last_name": "Dupont", "address": 1}'
http://localhost:5000/users/

HTTP/1.0 201 CREATED
Location: http://localhost:5000/users/1/
Content-Type: application/json
Content-Length: 0
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 17:27:34 GMT

You can check that your Foreign constrain is working with:

curl -i -H "Content-type: application/json" -X POST -d
'{"first_name":"Super", "last_name": "Man", "address": 2}'
http://localhost:5000/users/

HTTP/1.0 400 BAD REQUEST
Content-Type: application/json
Content-Length: 38
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 17:30:03 GMT

{"error": "address does not validate"}

This fail because address 2 does not exists.

Retreive the adress of a user

If you now the user, it’s easy to get the adress.

First get the user:

curl -i http://localhost:5000/users/1/
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 90
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 17:42:18 GMT

{
"address": 1,
"first_name": "Super",
"last_name": "Dupont",
"ressource_uri": "/users/1/"
}

His adress has the id “1”. We can issue a request:

curl -i http://localhost:5000/address/1/
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 112
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 17:44:07 GMT

{
 "city": "Paris",
 "country": "France",
 "number": 45,
 "ressource_uri": "/address/1/",
 "street": "quais de Valmy"
}

Retreive users from an adress

The same apply in the other side. As we know the adress id:

curl -i http://localhost:5000/users/?address=1
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 228
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 17:46:13 GMT

{
 "meta": {
 "count": 20,
 "filters": {
 "address": "1"
 },
 "next": "null",
 "offset": 0,
 "previous": "null",
 "total_count": 1
 },
 "object_list": [
 {
 "address": 1,
 "first_name": "Super",
 "last_name": "Dupont",
 "ressource_uri": "/users/1/"
 }
]
}

next: Representing relations

Representing relations

Even if now can query adress from a user and users from an adress,
your users cannot know that the field “address”: 1 correspond to
/address/1/ plus it break a common rule. The id of the relation
correspond to yor internal logic. Users doesn’t have to know how it
work, they just have to use it.

What we will try to do in this part of the tutorial is the following:

	http://localhost:5000/users/1/ should return:

{
 "address": /address/1/,
 "first_name": "Super",
 "last_name": "Dupont",
 "ressource_uri": "/users/1/"
}

	this request should work

curl -i -H "Content-type: application/json" -X POST -d
'{"first_name":"Super", "last_name": "Dupont", "address":
"/adress/1/"}' http://localhost:5000/users/

	Of course, http://localhost:5000/users/?address=/adress/1/” should
return the users with this address.

Representiing the relation on the user side

This is the simplest task because you already changed the response
result by adding remove_id function to the list of View formater in
Show data to users

def format_address(response, obj):
 obj['address'] = "/address/{0}".format(obj['address'])
 return obj

Sure this method will work but if you get a close look on how
ForeignKeyField (IntForeign inherit from this class) You will see that
the ForeignKeyField is filled with th options parameter you gave at
the foreign key creation. You can so write:

def format_foreign_key(response, obj):
 from rest_api_framework.models.fields import ForeignKeyField
 for f in response.model.get_fields():
 if isinstance(f, ForeignKeyField):
 obj[f.name] = "/{0}/{1}/".format(f.options["foreign"]["table"],
 obj[f.name])
 return obj

This function can then be used in all your project when you need to
translate a foreignkey into a meaning full ressource uri

For now, you can add this function to the list of formaters in your
UserEndPoint views:

view = {"response_class": JsonResponse,
 "options": {"formaters": ["add_ressource_uri",
 remove_id,
 format_foreign_key

]}}

Check the formater

curl -i http://localhost:5000/users/
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 226
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 21:21:44 GMT

{
 "meta": {
 "count": 20,
 "filters": {},
 "next": "null",
 "offset": 0,
 "previous": "null",
 "total_count": 1
 },
 "object_list": [
 {
 "address": "/address/1/",
 "first_name": "Super",
 "last_name": "Dupont",
 "ressource_uri": "/users/1/"
 }
]
}

Formating data for the system

Because you hide the internal implementation of your API to your user,
you have to give him a way to interact with your API.

To do so, you need to create a formater, exactly like you have done
for the View. But this time you must do it for the Controller.

def foreign_keys_format(view, obj):
 from rest_api_framework.models.fields import ForeignKeyField
 for f in view.datastore.model.get_fields():
 if isinstance(f, ForeignKeyField):
 if obj.get(f.name):
 obj[f.name] = int(obj[f.name].split("/")[-2])
 return obj

and add it to the controller formater. Change the UserEndPoint
controller:

controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 "options": {"pagination": Pagination(20),
 "formaters": [foreign_keys_format]}
 }

Now, each time the endpoint will deal with a data fields corresponding
to a ForeignKeyField it will retreive the id from the url supplied

“/address/1/” will be translated in 1

Check the Controller translation

curl -i -H "Content-type: application/json" -X POST -d
'{"first_name":"Captain", "last_name": "America", "address":
"/adress/1/"}' http://localhost:5000/users/

HTTP/1.0 201 CREATED
Location: http://localhost:5000/users/2/
Content-Type: application/json
Content-Length: 0
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 22:23:43 GMT

curl -i http://localhost:5000/users/?address=/adress/1/
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 341
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Tue, 15 Oct 2013 22:33:47 GMT

{
 "meta": {
 "count": 20,
 "filters": {
 "address": 1
 },
 "next": "null",
 "offset": 0,
 "previous": "null",
 "total_count": 2
 },
 "object_list": [
 {
 "address": "/address/1/",
 "first_name": "Super",
 "last_name": "Dupont",
 "ressource_uri": "/users/1/"
 },
 {
 "address": "/address/1/",
 "first_name": "Supe",
 "last_name": "Dupont",
 "ressource_uri": "/users/2/"
 }
]
}

next: Authentication and Authorization: Protecting your API

Authentication and Authorization: Protecting your API

Authentication and Authorization are different topics as you can
implement Authentication without Authorization (For rate-limiting or
loggin for example).

Authentication

The fist thing you can do is to add an Authentication
backend. Authentication backend needs a datastore to retreive the user
accessing the API. This datastore can be used by another endpoint of
your API or a datastore aimed for this purpose only.

In this example, we will use a very simple datastore, meant for
testing purpose: the PythonListDataStore.

Define a backend

The PythonListDataStore is just a list of python dictionnary. So let’s
first create this list:

ressources = [{"accesskey": "hackme"}, {"accesskey": "nopassword"}]

Like any other datastore, you need a Model to describe your datastore:

class KeyModel(models.Model):
 fields = [
 models.StringPkField(name="accesskey", required=True)
]

Then you can instanciate your datastore:

from rest_api_framework.datastore import PythonListDataStore

datastore = PythonListDataStore(ressources, KeyModel)

Instanciate the Authentication backend

To keep this example simple we will use another testing tool, the
ApiKeyAuthentication

ApiKeyAuthentication will inspect the query for an “apikey”
parameter. If the “apikey” correspond to an existing object in the
datastore, it will return this object. Otherwise, the user is
anonymous.

from rest_api_framework.authentication import ApiKeyAuthentication
authentication = ApiKeyAuthentication(datastore, identifier="accesskey")

Then you can plug this authentication backend to your endpoint:

controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 "options": {"pagination": Pagination(20),
 "formaters": [foreign_keys_format],
 "authentication": authentication}
 }

Instanciate the Authorization backend

The Authorization backend relies on the Authentication backend to
retreive a user. With this user and the request, it will grant access
or raise an Unauthorized error.

For this example we will use the base Authentication class. This class
tries to authenticate the user. If the user is authenticated, then
access is granted. Otherwise, it is not.

	from rest_api_framework.authentication import Authorization

	then add it to the controller options:

controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 "options": {"pagination": Pagination(20),
 "formaters": [foreign_keys_format],
 "authentication": authentication,
 "authorization": Authorization,
 }
 }

Testing Authentication and Authorization Backend

Let’s give a try:

curl -i -X GET http://localhost:5000/users/?accesskey=hackme
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 350
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Wed, 16 Oct 2013 12:18:52 GMT

curl -i -X GET http://localhost:5000/users/?accesskey=helloworld
HTTP/1.0 401 UNAUTHORIZED
Content-Type: application/json
Content-Length: 350
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Wed, 16 Oct 2013 12:19:26 GMT

curl -i -X GET http://localhost:5000/users/
HTTP/1.0 401 UNAUTHORIZED
Content-Type: application/json
Content-Length: 350
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Wed, 16 Oct 2013 12:19:45 GMT

next: Rate Limiting your endpoints

Rate Limiting your endpoints

Now that your users are authenticated and that you put an
authorization backend, you can add a rate limit on your api. Rate
limit will prevent your users to over use your endpoints.

With rate limit, a user can call your API at a certain rate. A number
of calls per an interval. You have to decide how many call and wich
interval.

For this example, let say something like 100 call per 10 minutes. For
Python REST Framework, interval are counted in seconds so 10 minutes
equals 10*60 = 600

Create a datastore for rate-limit:

The rate-limit implementation need a datastore to store
rate-limit. Let’s create one:

class RateLimitModel(models.Model):
 fields = [models.StringPkField(name="access_key"),
 models.IntegerField(name="quota"),
 models.TimestampField(name="last_request")]

You can then add your new datastore to the list of options of you
controller:

Add Rate-limit to your API

from rest_api_framework.ratelimit import RateLimit

 controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 "options": {"pagination": Pagination(20),
 "formaters": [foreign_keys_format],
 "authentication": authentication,
 "authorization": Authorization,
 "ratelimit": RateLimit(
 PythonListDataStore([],RateLimitModel),
 interval=10*60,
 quota=100)
 }
 }

Test!

curl -i -X GET http://localhost:5000/users/?accesskey=hackme
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 350
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Wed, 16 Oct 2013 15:22:12 GMT

{"meta": {"count": 20, "total_count": 2, "next": "null", "filters":
{"accesskey": "hackme"}, "offset": 0, "previous": "null"},
"object_list": [{"ressource_uri": "/users/1/", "first_name": "Super",
"last_name": "Dupont", "address": "/address/1/"}, {"ressource_uri":
"/users/2/", "first_name": "Supe", "last_name": "Dupont", "address":
"/address/1/"}]}

curl -i -X GET http://localhost:5000/users/?accesskey=hackme
HTTP/1.0 429 TOO MANY REQUESTS
Content-Type: application/json
Content-Length: 23
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Wed, 16 Oct 2013 15:22:14 GMT

next: Implementing Partial Response

Implementing Partial Response

You can give your user the ability to retreive only the data they need
instead of all of an object representation. For the adress field, some
can want to retreive only the country and the city field but do not
care about the others.

with Python REST API Framework, it’s easy to make this happend.

First import the Partial base class:

from rest_api_framework.partials import Partial

Then add the partial option to the AddressEndPoint:

class AddressEndPoint(UserEndPoint):
 ressource = {
 "ressource_name": "address",
 "ressource": {"name": "adress_book.db", "table": "address"},
 "model": AddressModel,
 "datastore": SQLiteDataStore,
 "options": {"partial": Partial()}
 }

Test the Partial

curl -i -X GET "http://localhost:5000/address/?accesskey=hackme&fields=city,country"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 241
Server: Werkzeug/0.8.3 Python/2.7.2
Date: Wed, 16 Oct 2013 15:50:27 GMT

{
 "meta": {
 "count": 20,
 "filters": {
 "accesskey": "hackme",
 "fields": "city,country"
 },
 "next": "null",
 "offset": 0,
 "previous": "null",
 "total_count": 1
 },
 "object_list": [
 {
 "city": "Paris",
 "country": "France",
 "ressource_uri": "/address/1/"
 }
]
}

next: The Whole Application

The Whole Application

To let you have a look on the application you have build so far, here
is the whole application you have build:

from rest_api_framework import models
from rest_api_framework.models.fields import ForeignKeyField
from rest_api_framework.datastore import SQLiteDataStore, PythonListDataStore
from rest_api_framework.datastore.validators import UniqueTogether
from rest_api_framework.controllers import Controller
from rest_api_framework.pagination import Pagination
from rest_api_framework.authentication import (ApiKeyAuthentication,
 Authorization)
from rest_api_framework.ratelimit import RateLimit
from rest_api_framework.partials import Partial
from rest_api_framework.views import JsonResponse

ressources = [{"accesskey": "hackme"}, {"accesskey": "nopassword"}]

class KeyModel(models.Model):
 fields = [
 models.StringPkField(name="accesskey", required=True)
]

class RateLimitModel(models.Model):
 fields = [models.StringPkField(name="access_key"),
 models.IntegerField(name="quota"),
 models.TimestampField(name="last_request")]

datastore = PythonListDataStore(ressources, KeyModel)
authentication = ApiKeyAuthentication(datastore, identifier="accesskey")

class UserModel(models.Model):

 fields = [models.StringField(name="first_name", required=True),
 models.StringField(name="last_name", required=True),
 models.PkField(name="id", required=True),
 models.IntForeign(name="address",
 foreign={"table": "address",
 "column": "id",
 }
),

]

class AddressModel(models.Model):

 fields = [models.StringField(name="country", required=True),
 models.StringField(name="city", required=True),
 models.StringField(name="street", required=True),
 models.IntegerField(name="number", required=True),
 models.PkField(name="id", required=True)
]

def remove_id(response, obj):
 obj.pop(response.model.pk_field.name)
 return obj

def format_foreign_key(response, obj):

 for f in response.model.get_fields():
 if isinstance(f, ForeignKeyField):
 obj[f.name] = "/{0}/{1}/".format(f.options["foreign"]["table"],
 obj[f.name])
 return obj

def foreign_keys_format(view, obj):
 for f in view.datastore.model.get_fields():
 if isinstance(f, ForeignKeyField):
 if obj.get(f.name):
 obj[f.name] = int(obj[f.name].split("/")[-2])
 return obj

class UserEndPoint(Controller):
 ressource = {
 "ressource_name": "users",
 "ressource": {"name": "adress_book.db", "table": "users"},
 "model": UserModel,
 "datastore": SQLiteDataStore,
 "options": {"validators": [UniqueTogether("first_name", "last_name")],
 }
 }

 controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 "options": {"pagination": Pagination(20),
 "formaters": [foreign_keys_format],
 "authentication": authentication,
 "authorization": Authorization,
 "ratelimit": RateLimit(
 PythonListDataStore([],RateLimitModel),
 interval=100,
 quota=200),
 }
 }

 view = {"response_class": JsonResponse,
 "options": {"formaters": ["add_ressource_uri",
 remove_id,
 format_foreign_key
]}}

class AddressEndPoint(UserEndPoint):
 ressource = {
 "ressource_name": "address",
 "ressource": {"name": "adress_book.db", "table": "address"},
 "model": AddressModel,
 "datastore": SQLiteDataStore,
 "options": {"partial": Partial()}
 }
if __name__ == '__main__':

 from werkzeug.serving import run_simple
 from rest_api_framework.controllers import WSGIDispatcher
 app = WSGIDispatcher([AddressEndPoint, UserEndPoint])
 run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

REST API Framework API references

Main modules

	Controllers

	DataStores

	Views

Optional modules

	Authentication

	Authorization

	Pagination

	Partials

	Rate Limit

Controllers

	
class rest_api_framework.controllers.ApiController(*args, **kwargs)

	Inherit from WSGIWrapper
implement the base API method. Should be inherited to create your own API

	
index(request)

	The root url of your ressources. Should present a list of
ressources if method is GET.
Should create a ressource if method is POST
:param request:
:type request: werkzeug.wrappers.Request
if self.auth is set call
authentication.Authentication.check_auth()

	Returns:	ApiController.get_list() if request.method is GET,
ApiController.create() if request.method is POST

	
paginate(request)

	invoke the Pagination class if the optional pagination has been set.
return the objects from the datastore using datastore.get_list
:param request:
:type request: werkzeug.wrappers.Request

	
get_list(request)

	On the base implemetation only return self.paginate(request).
Placeholder for pre pagination stuff.

	Parameters:	request (werkzeug.wrappers.Request) –

	
unique_uri(request, identifier)

	Retreive a unique object with his URI.
Act on it accordingly to the Http verb used.

	Parameters:	request (werkzeug.wrappers.Request) –

	
get(request, identifier)

	Return an object or 404

	Parameters:	request (werkzeug.wrappers.Request) –

	
create(request)

	Try to load the data received from json to python, format each
field if a formater has been set and call the datastore for
saving operation. Validation will be done on the datastore side

If creation is successfull, add the location the the headers
of the response and render a 201 response with an empty body

	Parameters:	request (werkzeug.wrappers.Request) –

	
update_list(request)

	Try to mass update the data.

	
update(request, identifier)

	Try to retreive the object identified by the identifier.
Try to load the incomming data from json to python.

Call the datastore for update.

If update is successfull, return the object updated with a
status of 200

	Parameters:	request (werkzeug.wrappers.Request) –

	
delete(request, identifier)

	try to retreive the object from the datastore (will raise a
NotFound Error if object does not exist) call the delete

method on the datastore.

return a response with a status code of 204 (NO CONTENT)

	Parameters:	request (werkzeug.wrappers.Request) –

	
class rest_api_framework.controllers.Controller(*args, **kwargs)

	Controller configure the application. Set all configuration
options and parameters on the Controller, the View and the
Ressource

	
load_urls()

	

	Parameters:	urls (list) – A list of tuple in the form (url(string),
view(string), permitted Http verbs(list))

return a werkzeug.routing.Map

this method is automaticaly called by __init__ to build the
Controller urls mapping

	
make_options(options)

	Make options enable Pagination, Authentication, Authorization,
RateLimit and all other options an application need.

	
class rest_api_framework.controllers.WSGIWrapper

	Base Wsgi application loader. WSGIWrapper is an abstract
class. Herited by ApiController it make the class
callable and implement the request/response process

	
wsgi_app(environ, start_response)

	instanciate a Request object, dispatch to the needed method,
return a response

	
dispatch_request(request)

	Using the werkzeug.routing.Map constructed by
load_urls() call the view method with the request
object and return the response object.

	
class rest_api_framework.controllers.AutoDocGenerator(apps)

	Auto generate a documentation endpoint for each endpoints registered.

	
schema(request)

	Generate the schema url of each endpoints

	
ressource_schema(request, ressource)

	
	Generate the main endpoint of schema. Return the list of all

	print app.datastore.modelendpoints available

DataStores

	
class rest_api_framework.datastore.base.DataStore(ressource_config, model, **options)

	define a source of data. Can be anything fron database to other
api, files and so one

	
get(identifier)

	Should return a dictionnary representing the ressource matching the
identifier or raise a NotFound exception.

Note

Not implemented by base DataStore class

	
create(data)

	data is a dict containing the representation of the
ressource. This method should call
validate(),
create the data in the datastore and return the ressource
identifier

Not implemented by base DataStore class

	
update(obj, data)

	should be able to call get() to retreive the
object to be updated, validate_fields() and
return the updated object

Note

Not implemented by base DataStore class

	
delete(identifier)

	should be able to validate the existence of the object in the
ressource and remove it from the datastore

Note

Not implemented by base DataStore class

	
get_list(offset=None, count=None, **kwargs)

	This method is called each time you want a set of data.
Data could be paginated and filtered.
Should call filter()
and return paginate()

Note

Not implemented by base DataStore class

	
filter(**kwargs)

	should return a way to filter the ressource according to
kwargs. It is not mandatory to actualy retreive the
ressources as they will be paginated just after the filter
call. If you retreive the wole filtered ressources you loose
the pagination advantage. The point here is to prepare the
filtering. Look at SQLiteDataStore.filter for an example.

Note

Not implemented by base DataStore class

	
paginate(data, offset, count)

	Paginate sould return all the object if no pagination options
have been set or only a subset of the ressources if pagination
options exists.

	
validate(data)

	Check if data send are valid for object creation. Validate
Chek that each required fields are in data and check for their
type too.

Used to create new ressources

	
validate_fields(data)

	Validate only some fields of the ressource.
Used to update existing objects

	
class rest_api_framework.datastore.simple.PythonListDataStore(ressource_config, model, **options)

	Bases: rest_api_framework.datastore.base.DataStore

a datastore made of list of dicts

	
get(identifier)

	return an object matching the uri or None

	
get_list(offset=0, count=None, **kwargs)

	return all the objects. paginated if needed

	
update(obj, data)

	Update a single object

	
class rest_api_framework.datastore.sql.SQLiteDataStore(ressource_config, model, **options)

	Bases: rest_api_framework.datastore.base.DataStore

Define a sqlite datastore for your ressource. you have to give
__init__ a data parameter containing the information to connect to
the database and to the table.

example:

data={"table": "tweets",
 "name": "test.db"}
model = ApiModel
datastore = SQLiteDataStore(data, **options)

SQLiteDataStore implement a naive wrapper to convert Field
types into database type.

	int will be saved in the database as INTEGER

	float will be saved in the database as REAL

	basestring will be saved in the database as TEXT

	if the Field type is PKField, is a will be saved as
PRIMARY KEY AUTOINCREMENT

As soon as the datastore is instanciated, the database is create
if it does not exists and table is created too

Note

	It is not possible to use :memory database either.
The connection is closed after each operations

	
get_connector()

	return a sqlite3 connection to communicate with the table
define in self.db

	
filter(**kwargs)

	Change kwargs[“query”] with “WHERE X=Y statements”. The
filtering will be done with the actual evaluation of the query
in paginate() the sql can then be lazy

	
paginate(data, **kwargs)

	paginate the result of filter using ids limits. Obviously, to
work properly, you have to set the start to the last ids you
receive from the last call on this method. The max number of
row this method can give back depend on the paginate_by option.

	
get_list(**kwargs)

	return all the objects, paginated if needed, fitered if
filters have been set.

	
get(identifier)

	Return a single row or raise NotFound

	
create(data)

	Validate the data with base.DataStore.validate()
And, if data is valid, create the row in database and return it.

	
update(obj, data)

	Retreive the object to be updated
(get() will raise a NotFound error if the row
does not exist)

Validate the fields to be updated and return the updated row

	
delete(identifier)

	Retreive the object to be updated

(get() will raise a NotFound error if
the row does not exist)

Return None on success, Raise a 400 error if foreign key
constrain prevent delete.

Views

	
class rest_api_framework.views.JsonResponse(model, ressource_name, formaters=['add_ressource_uri'], **options)

	A werkzeug Response rendering a json representation of the object(s)
This class is callable. you should do :

view = JsonResponse(model, ressource_name, formaters=formaters,
 **options)
return view(objects)

	
format(objs)

	Format the output using formaters listed in self.formaters

Authentication

	
class rest_api_framework.authentication.Authentication

	Manage the authentication of a request. Must implement the get_user method

	
get_user(identifier)

	Must return a user if authentication is successfull, None otherwise

	
class rest_api_framework.authentication.ApiKeyAuthentication(datastore, identifier='apikey')

	Authentication based on an apikey stored in a datastore.

	
get_user(request)

	return a user or None based on the identifier found in the
request query parameters.

	
class rest_api_framework.authentication.BasicAuthentication(datastore)

	Implement the Basic Auth authentication
http://fr.wikipedia.org/wiki/HTTP_Authentification

	
get_user(request)

	return a user or None based on the Authorization: Basic header
found in the request. login and password are Base64 encoded
string : “login:password”

Authorization

	
class rest_api_framework.authentication.Authorization(authentication)

	Check if an authenticated request can perform the given action.

	
check_auth(request)

	Return None if the request user is authorized to perform this
action, raise Unauthorized otherwise

	Parameters:	request (werkzeug.wrappers.Request) –

	
class rest_api_framework.authentication.Authorization(authentication)

	Check if an authenticated request can perform the given action.

	
check_auth(request)

	Return None if the request user is authorized to perform this
action, raise Unauthorized otherwise

	Parameters:	request (werkzeug.wrappers.Request) –

Pagination

	
class rest_api_framework.pagination.Pagination(max_result, offset_key='offset', count_key='count')

	The base implementation of Pagination.
__init__ define max, offset and count.

	
paginate(request)

	return an offset, a count and the request kwargs without
pagination parameters

Partials

Enable partials response from the api. With partials response, only a
subset of fields are send back to the request user.

DataStore are responsible for implementing partial options

	
class rest_api_framework.partials.Partial(partial_keyword='fields')

	The base implementation of partial response.

	
get_partials(**kwargs)

	This partial implementation wait for a list of fields
separated by comma. Other implementations are possible. Just
inherit from this base class and implement your own
get_partials method.

get_partials does not check that the fields are part of the
model. Datastore get_list will check for it and raise an error
if needed.

Rate Limit

Handle the rate limit option for a Controller.

	
exception rest_api_framework.ratelimit.TooManyRequest(description=None)

	Implement the 429 status code (see
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html for details)

	
class rest_api_framework.ratelimit.RateLimit(datastore, interval=6000, quota=100)

	Rate limit a user depending on the datetime of the request, the
number of previous requests and the rate-limit strategy

	
check_limit(request)

	Implment the rate-limit method should first authenticate the
user, then check his rate-limit quota based on the request.
If request is not rate-limited, should increment the
rate-limit counter.

Return None if the request is not rate-limited. raise
HttpError with a 429 code otherwise

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rest_api_framework	

 	
 	
 rest_api_framework.partials	

 	
 	
 rest_api_framework.ratelimit	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | J
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	ApiController (class in rest_api_framework.controllers)

 	ApiKeyAuthentication (class in rest_api_framework.authentication)

 	
 	Authentication (class in rest_api_framework.authentication)

 	Authorization (class in rest_api_framework.authentication), [1]

 	AutoDocGenerator (class in rest_api_framework.controllers)

B

 	
 	BasicAuthentication (class in rest_api_framework.authentication)

C

 	
 	check_auth() (rest_api_framework.authentication.Authorization method), [1]

 	check_limit() (rest_api_framework.ratelimit.RateLimit method)

 	Controller (class in rest_api_framework.controllers)

 	
 	create() (rest_api_framework.controllers.ApiController method)

 	(rest_api_framework.datastore.base.DataStore method)

 	(rest_api_framework.datastore.sql.SQLiteDataStore method)

D

 	
 	DataStore (class in rest_api_framework.datastore.base)

 	delete() (rest_api_framework.controllers.ApiController method)

 	(rest_api_framework.datastore.base.DataStore method)

 	(rest_api_framework.datastore.sql.SQLiteDataStore method)

 	
 	dispatch_request() (rest_api_framework.controllers.WSGIWrapper method)

F

 	
 	filter() (rest_api_framework.datastore.base.DataStore method)

 	(rest_api_framework.datastore.sql.SQLiteDataStore method)

 	
 	format() (rest_api_framework.views.JsonResponse method)

G

 	
 	get() (rest_api_framework.controllers.ApiController method)

 	(rest_api_framework.datastore.base.DataStore method)

 	(rest_api_framework.datastore.simple.PythonListDataStore method)

 	(rest_api_framework.datastore.sql.SQLiteDataStore method)

 	get_connector() (rest_api_framework.datastore.sql.SQLiteDataStore method)

 	get_list() (rest_api_framework.controllers.ApiController method)

 	(rest_api_framework.datastore.base.DataStore method)

 	(rest_api_framework.datastore.simple.PythonListDataStore method)

 	(rest_api_framework.datastore.sql.SQLiteDataStore method)

 	
 	get_partials() (rest_api_framework.partials.Partial method)

 	get_user() (rest_api_framework.authentication.ApiKeyAuthentication method)

 	(rest_api_framework.authentication.Authentication method)

 	(rest_api_framework.authentication.BasicAuthentication method)

I

 	
 	index() (rest_api_framework.controllers.ApiController method)

J

 	
 	JsonResponse (class in rest_api_framework.views)

L

 	
 	load_urls() (rest_api_framework.controllers.Controller method)

M

 	
 	make_options() (rest_api_framework.controllers.Controller method)

P

 	
 	paginate() (rest_api_framework.controllers.ApiController method)

 	(rest_api_framework.datastore.base.DataStore method)

 	(rest_api_framework.datastore.sql.SQLiteDataStore method)

 	(rest_api_framework.pagination.Pagination method)

 	
 	Pagination (class in rest_api_framework.pagination)

 	Partial (class in rest_api_framework.partials)

 	PythonListDataStore (class in rest_api_framework.datastore.simple)

R

 	
 	RateLimit (class in rest_api_framework.ratelimit)

 	ressource_schema() (rest_api_framework.controllers.AutoDocGenerator method)

 	
 	rest_api_framework.partials (module)

 	rest_api_framework.ratelimit (module)

S

 	
 	schema() (rest_api_framework.controllers.AutoDocGenerator method)

 	
 	SQLiteDataStore (class in rest_api_framework.datastore.sql)

T

 	
 	TooManyRequest

U

 	
 	unique_uri() (rest_api_framework.controllers.ApiController method)

 	update() (rest_api_framework.controllers.ApiController method)

 	(rest_api_framework.datastore.base.DataStore method)

 	(rest_api_framework.datastore.simple.PythonListDataStore method)

 	(rest_api_framework.datastore.sql.SQLiteDataStore method)

 	
 	update_list() (rest_api_framework.controllers.ApiController method)

V

 	
 	validate() (rest_api_framework.datastore.base.DataStore method)

 	
 	validate_fields() (rest_api_framework.datastore.base.DataStore method)

W

 	
 	wsgi_app() (rest_api_framework.controllers.WSGIWrapper method)

 	
 	WSGIWrapper (class in rest_api_framework.controllers)

Authentication and Authorization

Endpoint can be easily protected with a custom or existing
backend. Authentication and Authorization are given as argument to the
Controller. Authorization backend will be given the request
object. You can then have a very fine grained control on
Authorization.

Authentication

Authentication implement the get_user(identifier) method. As
Authentication need to read the list of users somewhere, it need a
datastore to work with.

As always, datastore can be anything from a simple python list, a
database, another api and so on.

Authentication return the user object the datastore provide

Example

class ApiKeyAuthentication(Authentication):

 def __init__(self, datastore, **options):
 self.datastore = datastore

 def get_user(self, identifier):
 try:
 user = self.datastore.get(identifier)
 return user
 except NotFound:
 return None

Authorization

Authorization need a way to indentify a user. An Authentication
backend is used for this need.

They implements the check_auth(request) method. This method should
return None if authorization is granted or raise an Unauthorized error
otherwise.

Note

this documentation use “user” as a placeholder. You do not need a
user. Only something to identify the request. This could be
anything from a hash, a password, public key and so on...

Example

class ApiKeyAuthorization(Authorization):
 """
 This authentication backend use an api key to authenticate and
 authorize users
 """
 def __init__(self, authentication, **options):
 self.authentication = authentication

 def check_auth(self, request):
 """
 Check if a user is authorized to perform a particular action.
 """
 data = request.values.to_dict()
 if "apikey" in data:
 if self.authentication.get_user(data['apikey']):
 return
 else:
 raise Unauthorized

 raise Unauthorized

How to use an Authentication/Authorization backend

For this example we will use a very simple datastore ressource for
authentication purpose :

ressources = [{"id": "azerty"}]

The ressource is a python dict. Is ok to use the PythonListDataStore
to connect to the ressource.

The model will be simple too:

class AuthModel(models.Model):
 fields = [
 models.StringField(name="id", required=True)
]

Then here is our datastore fully functional:

datastore = PythonListDataStore(ressources, AuthModel)

Then we can instanciate an ApiKeyAuthentication :

authentication = ApiKeyAuthentication(datastore)

Finnaly, ApiKeyAuthorization can be instanciated too:

auth = ApiKeyAuthorization

You can now use any of your api and protect it with the
ApiKeyAuthorization you just created:

class ApiAppAuth(Controller):
 controller = {
 "options": {"authentication": auth,
 "authorization": ApiKeyAuthorization
 }
 }
 <other arguments>...

Each time a user access this api, he must use ?apikey=azerty to be
granted access to the api.

Controllers

Controller manage the dialogue between the request and the
datastore. Controller handle all the request related stuff:

	Pagination

	Authentication

	Authorization

	Rate-Limit

	Authorized verbs

Mandatory Arguments

When creating a controller, some arguments are mandatory. It define
how your controller should handle requests.

	list_verbs: list_verbs will tell your controller wich verbs are
allowed at the root of your ressource. [“GET”, “POST”] for a read
and write API, and only [“GET”] for a read-only API

	unique_verbs: unique verbs tell your controller wich verbs are
allowed at the unique identifier endpoint of your ressource
(/ressource_name/<unique_id>). [“GET”, “PUT”, “DELETE”] fa read and
write API, [“GET”] for a read-only API.

Optionals parameters

Optionals parameters make your api able to manage special features
like Pagination, Authentication, Authorization and Rate-Limit. They
each depend on your own implementation.

Exemples:

controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 "options": {"pagination": Pagination(20)}
 }

This will create:

	a read and write API (GET and POST on the root URL, GET, PUT and
DELETE on the detail URL)

	with a pagination of 20 results max because of the optional
pagination parameter. Results will be paginated using the offset and
count keyword (see Paginate a ressource) to get more on this topic.

Paginate a ressource

When you build your endpoint, each ressource can be
paginated. Pagination is enabled in the controller argument of an
application. See Controllers for more information about
controller configuration.

When you want to enable pagination on a ressource, you should use a
Pagination class. You can directly use rest_api_framework.pagination.Pagination
or create your own pagination mechanism inheriting from this class

Max, Offset and Count

Pagination should define some attributs:

	max

	offset_key

	count_key

Those attributs are not mandatory, you can create a Pagination based
on a token for exemple. (see below). But here how the base pagination
mechanism work.

The base Pagination class enable the choice of those attributs when
instanciated. For example:

controller = {
 "list_verbs": ["GET", "POST"],
 "unique_verbs": ["GET", "PUT", "DELETE"],
 "options": {"pagination": Pagination(20,
 offset_key="start",
 count_key="limit")}
 }

Define like this, one should get the 20th to 30th results of the
ressource “dogs” like this:

curl -i "http://<domain>.<ext>/dogs/?start=20&limit=10"

The paginate method

A paginate method take the request as argument and should return :

	offset

	count

	request kwargs

As pagination take some kwargs from the request to calculate offset
and count, it is possible to remove those keyword arguments from the
orignal request arguments. In the above example, the filter method of
the datastore will only receive an empty dict to filter the dogs
ressources.

Other pagination implementations

One should need to give a pagination based on a token instead of
offset and count. But as datastore will always paginate using start
and offset, the paginate method should be able to calculate those
values from the token. It’s up to you to create this method. This
should not be a problem because you have the whole request to work on.

Using more than a single endpoint

So far we have only talk about single endoint. However, is it possible
and very easy to create multimple endpoints on a single REST API
Framework instance.

You may have noticed that you use the class WSGIDispatcher to launch
your instance. In developpement environnment it look like :

from werkzeug.serving import run_simple
from rest_api_framework.controllers import WSGIDispatcher
app = WSGIDispatcher([ApiApp])
run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True

WSGIDispatcher take a list of app as a constructor. To add more
endpoint to your API you can write :

WSGIDispatcher([UserApp, EventApp])

each app will be available under the ressource name endpoint. For example

	/user/

	/event/

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Python Rest Api Framework's documentation

 		What is Python REST API Framework

 		Architecture

 		Controller

 		DataStore

 		View

 		How To use it

 		QuickStart

 		A Simple API

 		Using a database

 		Where to go from here

 		Tutorial: building an adressebook API

 		First Step Building a user endpoint

 		Define a model

 		Chose a DataStore

 		Chose a view

 		Create The user endpoint

 		Summary

 		Playing with the newly created endpoint

 		Create a user

 		List and Get

 		Delete a user

 		Update a User

 		Filtering

 		Error handling

 		Autodocumentation

 		Adding validators to your DataStore

 		UniqueTogether

 		Show data to users

 		Define a formater function

 		Make things generics

 		Working with Pagination

 		Creating fixtures

 		Pagination

 		Browsering Through Paginated objects

 		Pagination and Filters

 		Loading multiple endpoint

 		Define a new model

 		Inherite from previous apps

 		Add the app to the dispatcher

 		Check that everything work

 		Linking ressource together

 		Adding an adress

 		Create a user linked to an address

 		Retreive the adress of a user

 		Retreive users from an adress

 		Representing relations

 		Representiing the relation on the user side

 		Check the formater

 		Formating data for the system

 		Check the Controller translation

 		Authentication and Authorization: Protecting your API

 		Authentication

 		Define a backend

 		Instanciate the Authentication backend

 		Instanciate the Authorization backend

 		Testing Authentication and Authorization Backend

 		Rate Limiting your endpoints

 		Create a datastore for rate-limit:

 		Add Rate-limit to your API

 		Test!

 		Implementing Partial Response

 		Test the Partial

 		The Whole Application

 		REST API Framework API references

 		Main modules

 		Controllers

 		DataStores

 		Views

 		Optional modules

 		Authentication

 		Authorization

 		Pagination

 		Partials

 		Rate Limit

_static/comment-bright.png

